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Figure 1: Architecture of SAM

ABSTRACT

The Segment Anything Model (SAM) has been shown to
excel at segmenting natural images, but the direct applica-
tion of SAM to medical images presents challenges due to
inherent feature differences in medical data. This project
investigates the potential for adapting SAM for automated
segmentation of intracranial meningiomas on brain Mag-
netic Resonance Imaging (MRI) scans. Two approaches are
proposed to adapt SAM: (1) integrating complete architec-
tures like U-Net onto SAM, and (2) exploring 3D adaptor
layers with or without an additional 3D encoder. This re-
search contributes to the advancement of automated meth-
ods for objective and quantitative analysis of meningiomas,
potentially contributing to advancements in clinical care for
patients with this condition.
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1 INTRODUCTION & PROJECT
DESCRIPTION

Image Segmentation, the process of partitioning an image
into meaningful regions-of-interest, is crucial in various
computer vision applications [24]. Medical Image Segmenta-
tion (MIS) allows for accurate diagnosis, treatment planning,
and disease monitoring [18]. However, traditional meth-
ods used by medical professionals are time-consuming and
prone to errors due to subjectivity [9].

Deep Learning offers a promising alternative. The Seg-
ment Anything Model (SAM) excels in natural image seg-
mentation (coloured images of everyday objects). Its vast
training dataset and novel architecture allow it to achieve
high accuracy without requiring specific object-based train-
ing, known as zero-shot learning [12]. However, applying
SAM directly to medical images presents challenges due to
their inherent differences to natural images: 3D structures,
lower colour contrast, and higher noise levels [3, 7, 18].

Magnetic Resonance Imaging (MRI) is a non-invasive
imaging technique that generates detailed images using
magnetic fields and radio waves. With its ability to visu-
alise soft tissues [11, 13], MRI is crucial for diagnosing and
managing various conditions like tumour growth. A spe-
cific type of MRI, multi-parametric MRI (mpMRI), goes be-
yond basic anatomy by combining images from various MRI
sequences to capture different physiological properties of
tissues, helping in tumour characterisation [14]. For brain tu-
mours, mpMRI typically includes a series of T1-weighted be-
fore contrast, T1-weighted after contrast, T2-weighted and
T2-weighted Fluid Attenuated Inversion Recovery (FLAIR),
providing a comprehensive picture of the tumour for tasks
such as surgical planning and treatment response monitor-
ing [13, 14].

Meningiomas are the most common intracranial tumour
in adults. Although most are benign (non-cancerous), ag-
gressive tumours require intensive treatment [19, 20]. Seg-
mentation helps determine the size, location, and potential
aggressiveness of meningiomas. Its segmentation is unique



due to often attaching or infiltrating the skull base, requir-
ing the segmentation model to account for complex skull-
tumour interfaces [5, 10].

While some research has explored adapting SAM to MIS,
as further outlined in Section 2, it often focused on other
medical modalities or creating a universal model. In addi-
tion, there is a research gap on the specific improvements
these adaptations achieve compared to the baseline SAM
performance on the same task. Our project aims to address
this gap by investigating the potential of adapting SAM
for automated intracranial meningioma segmentation from
brain MRIs.

We propose two modifications to SAM’s framework: (1)
adding an additional architecture, such as a Convolutional
Neural Network (CNN) [1] like U-Net [23], on top of SAM,
and (2) adding 3D adaptor layers to SAM, with an optional
3D encoder.

Both models will be evaluated on the BraTS 2023 Menin-
gioma Challenge dataset, a standardised benchmark with
the largest collection of multi-label expert-annotated menin-
gioma mpMRIs to date [13], comparing their performance
to that of the original SAM model. This project contributes
to advancements in both medical adaptation of SAM and
automated meningioma segmentation, which could lead to
improved clinical care. We aim to achieve improved segmen-
tation performance compared to the baseline SAM model
by leveraging its strengths while addressing its limitations
for medical images.

2 RELATED WORK

Kirillov et al. [12] proposed the Segment Anything Model
(SAM) as a promptable foundation model for natural im-
age segmentation. Experiments show SAM outperforming
prominent segmentation models such as U-Net and UC-
TransNet on various tasks [26]. This is largely attributed
to its use of a novel vision transformer (ViT) architecture.
Notwithstanding, several underperformed scenes where
the default SAM struggles to accurately generate semantic
masks have been identified. These include shadow detection,
salient object detection and medical image segmentation [2].
Only after optimising SAM for such scenes can comparable
performance be achieved. Some adaptations may not match
our use case but still present useful insights and roadblocks.

SAM can serve as a component in a larger segmenta-
tion pipeline. Leveraging the strengths of several models
increases overall complexity but allows for more accurate
segmenting. This is apparent in work by Li et al. [16] and Lin
et al. [17]. The combinations of SAM and different neural
networks achieve better performance than their constituent
parts.

Other SAM adaptations are tailored for 3D. Gu et al. [6]
slice 3D MRIs into 2D chunks that SAM can process. In
addition, adapter blocks are incorporated into the image en-
coder and mask decoder. This allows for Parameter Efficient
Fine-Tuning (PEFT). Most parameters are kept constant dur-
ing training with the weights of these adapters being the
focus of updates. This approach offers faster convergence
times and lower resource use than the alternative of up-
dating all parameters. Other models like Med-SA [25] and
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AdaptiveSAM [21] have found success using similar PEFT
methods.

Standard slicing of 3D volumes sacrifices accuracy for
simplicity as information between slices is lost. Quan et al.
[22] combat this using a window to store a maximum of
three adjacent slices. This window offers more contextual
information than possible from segmenting each slice in
isolation.

3 PROBLEM STATEMENT

Automated segmentation of brain tumours from MRIs plays
a crucial role in clinical tasks, such as treatment planning
and surgical intervention [24]. While deep learning ap-
proaches like the Segment Anything Model (SAM) have
shown promise in image segmentation, directly applying
SAM to medical images presents challenges due to inherent
feature differences in medical data. SAM is primarily trained
on 2D natural images and may not capture the complexities
of 3D medical data like brain MRIs, which often have lower
colour contrast and higher noise levels. This limitation can
lead to suboptimal segmentation performance [3, 7, 18].
This project will investigate the potential of adapting
SAM for automated segmentation of intracranial menin-
giomas in brain MRIs. Specifically, we address the research
gap in which the improvement achieved by modifications
to SAM compared to its baseline performance is not well
explored. We propose two approaches to improve SAM’s
segmentation accuracy for brain tumour tasks:

(1) Integrating a separate, task-specific network, like a
Convolutional Neural Network (CNN) architecture
such as U-Net, on top of the pre-trained SAM.

(2) Incorporating 3D adaptor layers within SAM, with
the possibility of including a dedicated 3D encoder
specifically designed for processing 3D data.

Our problem statement for each approach is as follows:

(1) The baseline SAM model, trained on natural im-
ages, might not be optimal for Brain MRI Tumour
Segmentation. This project investigates if adding a
task-specific network on top of SAM can improve
its segmentation performance compared to the base-
line.

(2) SAM’s architecture is not applicable for processing
the 3D nature of Brain MRI data. This project inves-
tigates if incorporating 3D adaptor layers and/or a
3D encoder can improve its tumour segmentation
performance compared to the baseline.

3.1 Research Questions

3.1.1 Framework Modification 1: Adding Another
Network on SAM. Can adding a task-specific network on
top of the pre-trained SAM improve its intracranial menin-
gioma segmentation performance on brain MRIs, compared to
the baseline SAM performance on the same task?

We hypothesise that adding a U-Net or similar CNN ar-
chitecture on top of the pre-trained SAM will significantly
improve its intracranial meningioma segmentation accuracy
for brain MRI tasks compared to the baseline performance
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on the same task, even with the added complexity. This ad-
ditional network can learn task-specific features from brain
MRIs, leading to more accurate segmentation.

3.1.2 Framework Modification 2: Adding 3D Adaptor
Layers within SAM. Can adding 3D adaptor layers and/or
a 3D encoder within pre-trained SAM improve its intracra-
nial meningioma segmentation performance on brain MRIs,
compared to the baseline SAM performance on the same task?

We hypothesise that a combination of 3D adaptor lay-
ers and a 3D encoder specifically designed for 3D data will
significantly improve SAM’s performance for brain MRI in-
tracranial meningioma segmentation tasks. The 3D encoder
can learn more robust feature representations from the MRI
volumes, while the adaptor layers can further process these
features for accurate segmentation.

3.2 Aims

By answering our hypotheses for our research questions,
our project aims to achieve two primary goals:

o Evaluate the effectiveness of our two proposed mod-
ifications to the SAM framework for automated
segmentation of intracranial meningiomas in brain
MRIs.

e Achieve improvement in segmentation performance
compared to the baseline SAM model on the BraTS
2023 Meningioma Challenge dataset.

By achieving these objectives, we hope to demonstrate
the potential for adapting SAM for improved automated
intracranial meningioma segmentation methods, potentially
contributing to advancements in clinical care for patients
with this condition.

4 PROCEDURES AND METHODS

This section outlines the procedures and methods we will
employ to achieve our research objective. Our overall work-
flow can be seen in Figure 2.

4.1 Data Collection

We will utilise the BraTS 2023 Meningioma Challenge dataset
for this research project. This dataset consists of pre-operative
and pre-treatment MRIs of patients diagnosed with intracra-
nial meningioma. Ground truth segmentation labels for
three tumour compartments are included. These are visu-
alised in Figure 3.

4.2 Data Pre-Processing

The pre-processing operations performed by challenge or-
ganisers before making the dataset available are summarised
in Figure 4. For our experiments, a significant challenge lies
in transforming these scans for suitable input into SAM.
MRIs are inherently 3D volumetric data, while SAM is de-
signed for 2D images. There are several approaches to ad-
dress this challenge, each with its advantages and limita-
tions:

e Central Slice: We could extract only the central
slice from each MRI scan. However, this approach
loses crucial information about the 3D structure

Data Pre-Processing

| Fine-Tuned SAM Baseline Model I

I Design of Framework Modifications I

I Modification 1: Adding Another Network on SAM I I Modification 2: Adding 3D Adaptor Layers within SAM I

Development

Automatic Prompting

Figure 2: A flowchart that illustrates the overall work-
flow and key stages of our research project.
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Figure 3: A visual sample from the BraTS 2023 Menin-
gioma Challenge dataset, showing the three types of
tumour segmentations [13].

of the tumour, potentially impacting segmentation
accuracy.

o Stacking Slices: We could provide SAM with every
slice of the scan as separate inputs. This approach
preserves the 3D information but significantly in-
creases training time and computational resources.

e 3D to 2D Conversion Techniques: We could ex-
plore techniques like max pooling or average pool-
ing to convert 3D volumes into 2D representations
suitable for SAM. However, these techniques might
lead to information loss.

We will determine the most suitable pre-processing steps
for SAM input after evaluating the effectiveness of our fine-
tuning approaches. Other data augmentation techniques
will also be tested during training. These include random
flipping, rotation, and scaling. Such steps are meant to im-
prove the generality of the model.
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Figure 4: A flowchart of how the BraTS organisers pre-
processed the Intracranial Meningioma data for the
challenge [13].

4.3 Fine-Tuned SAM Baseline Model

We will establish a baseline model by fine-tuning the pre-
trained SAM architecture on the BraTS Meningioma dataset.
This involves utilising the pre-trained weights of the SAM
model and adapting the final layers to the three-class in-
tracranial meningioma segmentation task. We will focus
on employing Parameter-Efficient Fine-Tuning (PEFT) tech-
niques, and appropriate optimisation techniques and loss
functions to train the model. This will allow us to evalu-
ate the performance of both the vanilla/raw SAM and the
fine-tuned SAM with our modified models.

4.4 Design of our Framework
Modifications

This section outlines the two proposed framework modifi-
cations to the baseline SAM model.

4.4.1 Framework Modification 1: Adding Another
Network On SAM. This framework modification explores
integrating an additional entire network on top of the SAM
for intracranial meningioma segmentation in brain MRIs.

The overall justification is that it would leverage the
strengths of both models, to combine SAM’s powerful fea-
ture extraction with the established MIS performance of
a specialised architecture, for tailored use for intracranial
meningioma segmentation on brain MRIs. In addition, this
extra network can potentially learn more complex spatial
relationships within the MRIs, leading to improved segmen-
tation accuracy [1, 12, 16, 17].

However, adding a network introduces additional train-
able parameters, leading to increased training time and com-
putational demands. Efforts will be made to minimise model
size to ensure efficient training while maintaining accuracy.
In addition, carefully combining SAM’s capabilities with the
added network requires a well-defined, optimised strategy.
Aspects like information flow between the networks will
need to be addressed.

Many different types of networks and architectures could
be integrated with SAM. For our project, we propose Convo-
lutional Neural Networks (CNNs). They are a type of Deep
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Figure 5: A visual of Framework Modification #1: (1)
Sub-approach 1, where a CNN Encoder is used in paral-
lel with SAM’s Encoder. (2) Sub-approach 2, with SAM
First, CNN Second. (3) Sub-approach 2, with CNN First,
SAM Second.

Learning neural architecture specifically designed for im-
age recognition and analysis tasks. They excel in capturing
spatial relationships and extracting local and global features
from images, making them highly effective in MIS [1]. Two
sub-approaches will be considered.

Firstly, a parallel CNN encoder branch will be introduced
alongside SAM encoders, as seen in Part 1 of Figure 5. Both
encoders would independently process the input MRI. Their
extracted features will then be combined, using techniques
such as summation or channel-wise concatenation, which
will be fed into a decoder network for the final segmen-
tation mask prediction. This approach takes advantage of
the strengths of both models while promoting information
exchange.

Secondly, a pre-trained CNN architecture [1], such as
U-Net [23], will be placed either before or after the SAM
encoder. There are two potential workflows for this sub-
approach:

e SAM First, CNN Second: The SAM performs the
initial segmentation, leveraging its powerful feature
extraction. The CNN then further refines these seg-
mentations for improved detail and precision (Part
2 in Figure 5).

e CNN First, SAM Second: The CNN performs the
initial segmentation, providing coarse localisation.
The SAM then refines them to improve segmenta-
tion accuracy (Part 3 in Figure 5).

The chosen workflow (SAM First or CNN First) will be
determined through experimentation.

Note: While some research has integrated additional net-
works with SAM, it has not been extensively explored in the
medical field, particularly for brain MRIs and meningioma
segmentation. We will draw inspiration from existing methods
(e.g., ClipSAM [15], SAMUS [17]) while acknowledging their
applications and challenges.

44.2 Framework Modification 2: Adding 3D Adaptor
Layers Within SAM. ViT-B is a pre-trained ViT dominant
in lightweight applications of SAM. Tuning all 91 million
parameters of the transformer to make a task-specific ViT
would be resource-intensive. Adaptation is popular in natu-
ral language processing to reduce the number of trainable
parameters in a model [8]. Adaptor blocks work by project-
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Figure 6: Architecture of a Transformer Encoder [25]

ing model parameters onto a smaller subspace. Most of the
parameters are kept constant during training. Instead, those
in this smaller subspace are updated in each training cycle.
This reduces the computational cost of training very large
models.

The encoders within ViT-B are composed of multi-head
attention (MHA), fully connected network (FCN) and nor-
malisation layers as seen in Figure 6. Adaptor blocks have
been successfully added to the encoders in SAM [6, 25]. In
particular, Wu et al. incorporate adaptors to down-sample
images while introducing a Space-Depth Transpose (SD-
Trans) block. Its architecture is seen in Figure 7. This im-
proves the model performance on 3D data by incorporating
volume depth into each input embedding. It is hypothesised
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Figure 7: Adaptor placement in SD-Trans [25]

that such an adaptor structure can improve the performance
of SAM on the meningioma dataset. To test this, adaptor
blocks will be added to SAM in an attempt to achieve the
depth retention of Med-SA. The Med-SA source code is
available online and will be used to better understand how
to place adaptor blocks within the transformer. Using this
knowledge, the encoder architecture of Med-SA will be repli-
cated on our SAM baseline through appropriate adaptor
insertion.

Assuming successful replication of the SD-Trans, the
model’s performance on the meningioma dataset will show
how adding adaptor blocks affects performance. Alterna-
tively, other insertion points will be investigated for creation
of a different model that still utilises adaptor blocks to in-
corporate 3D information. One such possibility is the use of
pre-trained encoders designed for 3D data.

4.5 Development

4.5.1 Implementation Framework. PyTorch, a user-friendly
deep learning framework, will be used for the efficient de-
velopment of our modified SAM architectures. Meticulous
code documentation and Git version control ensure project
maintainability and collaboration.

4.5.2  Addressing Computational Demands. Training Deep
Learning models, especially for MIS tasks, can be very com-
putationally intensive. We anticipate this to be a significant
challenge in our project due to the complexity of our models.
We will address this with:

e Code Optimisation & Resource Management:
Techniques like batching and gradient checkpoint-
ing will reduce memory usage and training time
without sacrificing accuracy. We will closely mon-
itor resource consumption to identify and address
bottlenecks.

e Cloud Computing Resources: We will explore
leveraging free cloud platforms with powerful GPUs
to overcome the limitations of local hardware.

o Staged Training: A staged training approach will
involve initially training a smaller model, gradually
increasing complexity as it converges. This validates
core functionalities early while minimising compu-
tational demands.

If computational limitations become a major obstacle,
we might explore more significant changes, such as model
compression techniques, which will reduce the size of our
models and memory footprint, without sacrificing strategy.

4.5.3 Training Methodology. Both models will be trained
on the BraTS 2023 Meningioma Challenge dataset [13]. Our
training process will follow a well-defined pipeline with the
following key steps:

(1) Data Splitting: Rigorous splitting ensures a bal-
anced representation of tumour classes across train-
ing, validation, and testing sets.

(2) Model Initialisation & Transfer Learning: We
will leverage our fine-tuned baseline SAM model
as a starting point for both modified architectures
(adding another network on top of SAM & adding
3D Adaptor Layers), allowing them to benefit from
pre-trained features while learning meningioma-
specific details.

(3) Hyper-Parameter Tuning: We will employ tech-
niques like grid search or randomised search to op-
timise hyper-parameters such as learning rate, opti-
miser settings, and batch size for each model. This
tuning will be conducted using the validation set to
ensure generalisation performance.



(4) Training Loop & Monitoring: A comprehensive
training loop will be implemented, monitoring key
metrics within each epoch. Early stopping mech-
anisms will be implemented to stop training once
validation performance plateaus to prevent overfit-
ting.

Using these methods strategically, we aim to mitigate
computational challenges. We acknowledge that training
times may still be significant, and we will closely monitor
progress to adjust hyper-parameters or explore alternative
strategies if necessary.

4.6 Automatic Prompting Implementation
(Optional)

As an extension, we plan to investigate incorporating au-
tomatic prompting techniques to further improve segmen-
tation performance. This could involve dynamically gen-
erating task-specific prompts that guide the model during
the training process. However, this will depend on available
time and resources.

4.7 Evaluation & Analysis

Our focus is on segmentation accuracy. Dice loss and Inter-
section Over Union (IOU) scores will be used to express this
accuracy. The Serensen-Dice coefficient [4] compares the
intersection of samples to the sum of the constituent sam-
ples and expresses the result as a percentage. In our case, we
will be comparing ground-truth masks (A) and the predicted
masks (B) for each model. Dice loss is the corresponding
difference function, given by 1 - Dice coefficient.

Di 2|A N B|
ice = ———
AT+ 1B o
Lo _q_2AnB
Dice = |A| + |B|

These calculations will be performed by a test script once
a training cycle is complete. Data for this stage is taken from
the testing split of images and masks. As they are excluded
from training, this allows us to evaluate model performance
on unseen data. Higher Dice scores correspond with better
models. We will also express Dice scores on a three-point
scale: Bad, Okay, Good. A mask is considered "Bad" if it has
a Dice score below 50%. "Okay" scores are between 50% and
80%, while "Good" scores are above 80%. These values were
chosen as the majority of challenge submissions have dice
in the stated "Okay" range while the highest recorded score
on the challenge is 86.6%. Notably, no submissions utilising
SAM were identified.

5 ETHICAL, PROFESSIONAL, AND
LEGAL CONSIDERATIONS

Our project utilises anonymised Brain MRI data from the
BraTS 2023 challenge [13]. All patients provided informed
consent for their data usage through the challenge’s estab-
lished collaborations with medical institutions.

Since the data is pre-anonymised using standard methods
such as skull stripping [13], no additional ethics clearance is
needed. We commit to upholding data privacy and security
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regulations and best practices set by the BraTS challenge
organizers.

Academic integrity is paramount. We will attribute and
cite the SAM framework and any modifications appropri-
ately, ensuring copyright compliance and avoiding plagia-
rism.

Our modified SAMSeg models’ code and relevant scripts
will be released under the MIT license, fostering collabora-
tion and advancing SAM in the medical field. Intellectual
property from the project will be owned by the University
of Cape Town.

We remain vigilant for unforeseen ethical considerations,
adapting our approach as needed and consulting our su-
pervisor or university ethics committees if new concerns
arise.

6 ANTICIPATED OUTCOMES
6.1 Research

We will create fine-tuned SAM models focused on menin-
gioma segmentation. These are expected to offer perfor-
mance gains over the SAM baseline when tested on the
same inputs.

Our major challenge will be fitting the model designs
within time and budget constraints. If too complex, we may
be unable to train and evaluate our models using the avail-
able resources within the time limit. The project cannot be
extended beyond the due date.

6.2 Impact

The results of our experiments will give insight into the
effectiveness of hybrid fine-tuning for SAM in this task. This
work is expected to motivate research in other domains such
as pediatric tumors and brain metastases.

Tumour segmentation tools are currently used in the
diagnosis and treatment of patients. Our work serves as
a basis for possible advancements that manufacturers can
make to their products. This contributes to advancements
in clinical care for patients with meningiomas and possibly
other neurological conditions.

6.3 Success Factors

o Ability to transform 3D images into 2D with mini-
mal data loss.

e Final model designs can be trained and evaluated
using available computing power.

o Improved accuracy over the baseline version of SAM.

7 PROJECT PLAN

7.1 Risk Assessment

Our comprehensive Risk Assessment Matrix, with corre-
sponding Mitigation, Monitoring, and Management strate-
gies, can be found in Appendix A.

7.2 Resources Required

7.2.1  Equipment: Deep learning models for medical im-
age segmentation require substantial computational power,
particularly GPUs for accelerated computations. Access to
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departmental computing clusters or high-performance fa-
cilities with powerful GPUs will be necessary.

The BraTS 2023 Intracranial Meningioma Challenge dataset
is approximately 20GB. While our workstations may initially
suffice for storage, additional needs may arise with data aug-
mentation and model size. Alternative solutions like scalable
cloud storage services (e.g., Google Cloud Storage) will be
explored if necessary.

7.2.2  Personnel: Tapera & Cassandra: Responsible for
project oversight, research, development, evaluation, and
documentation. Supervisors (Patrick Marais and Fred
Nicolls): Regular meetings for guidance, feedback, and trou-
bleshooting.

7.2.3  Software: Deep Learning Framework: Utilising Py-
Torch or TensorFlow for building, training, and deploying
SAM models.

Version Control: Employing Git for collaborative develop-
ment and version control.

Libraries and Tools:

Data Manipulation & Processing: NumPy, Pandas
Image Processing: OpenCV, scikit-image, imgaug
Medical Image Analysis: SimpleITK, MONAI
Model Evaluation Metrics: scikit-learn for metrics
like Dice coefficient and Jaccard Index.

Visualisation: matplotlib for monitoring training progress.
Medical Image Segmentation GUI [16]: Open-source
GUI for potential qualitative evaluation of model perfor-
mance and visualisation of segmentation results.

7.3 Deliverables

Table 1 shows our project deliverables and corresponding
deadlines.

Deliverable Deadline
Literature Review 25/03/2024
Project Proposal Presentation 23/04/2024
Project Proposal 30/04/2024
Ethics Application (if required) 06/05/2024
Project Progress Demonstration 22/07/2024
Draft Project Paper 23/08/2024
Final Project Paper 30/08/2024
Final Project Code & Documentation | 09/09/2024
- Original/Vanilla SAM Model

- Fine-Tuned SAM Baseline Model

- Framework Modified #1 SAM Model

- Framework Modified #2 SAM Model

Final Project Demonstration 16/09/2024
Project Poster 27/09/2024
Project Website 04/10/2024
School of IT Showcase (Presentation | 22/10/2024
& Demonstration)

Table 1: Our Research Project Deliverables.

7.4 Timeline & Milestones

A Gantt chart with our full project timeline is visualised in
Appendix B. Table 2 presents a summary of the key mile-
stones.

No.| Milestone Expected
Date

1 | Completion of Research & Discovery | 25/03/2024

2 | Completion of Selection of Frame- | 12/04/2024
work Modification Approaches

3 | Completion of Dataset Selection 16/04/2024
Completion of Data Collection & Pre- | 11/05/2024
Processing

5 | Completion of Fine-Tuned SAM Base- | 25/05/2024
line Model

6 | Completion of Individual Framework | 05/07/2024
Modification Models

7 | Completion of Midpoint Demonstra- | 26/07/2024
tion Progress Review

8 | Completion of Final Evaluation & Re- | 03/08/2024
finement

9 | Completion of First Draft of Project | 23/08/2024
Papers

10 | Completion of Project 22/10/2024

Table 2: Key Project Milestones.

8 TASK ALLOCATION

Our task allocations can be seen below in Table 3.

Cassandra ‘ Tapera

Data Loading & Transforming
Baseline Fine-Tuned SAM
Modification #1 [ Modification #2
Evaluation
Project Paper Write-Up ‘ Project Paper Write-Up
Final Deliverables (website, poster)
Table 3: Our Research Project Task Allocation.
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A APPENDIX A: RISK ASSESSMENT

scope in writing, leaving
no ambiguity. Confirm this
with our supervisor ahead
of time. Implement ad-
vanced features, such as
automatic prompting, only
if time allows.

goals and deliverables
with the supervisor. Main-
tain open communication
with our supervisor to
discuss any potential
scope changes.

Risk Likelihood | Severity Mitigation Monitoring Management
Limited Availabil- | High High Leverage cloud computing | Track memory usage and | If this risk becomes a re-
ity of Computa- resources, such as Google | GPU/CPU utilisation dur- | ality, explore alternative
tional Resources Colab, for access to power- | ing training of our model. | approaches to reduce net-
(High Computa- ful GPUs, when the depart- | Monitor training time per | work complexity to scale
tional Demands ment cluster is not avail- | epoch to assess progress | our computational cost
of Deep Learning able. Consider using accel- | and identify bottlenecks. | with available resources.
Training) eration libraries, such as Such as: Model compres-
CUDA, if applicable. En- sion techniques, such as
sure code is optimised for pruning, to decrease com-
efficiency. putational load, without
sacrificing accuracy. Re-
ducing the size of the
model or the resolution of
the input.
Data Loss due to | Low High Utilise version control sys- | Monitor the integrity of | If this risk becomes a real-
Software Corrup- tems, like Git, for regular, | backups through periodic | ity, restore data from back-
tion or Hardware online code backups, al- | verification, ensuring | ups and revert to a pre-
Failure lowing reversion to previ- | there are no inconsisten- | vious working version of
ous versions if necessary. | cies in our repository. the code from the reposi-
Regularly commit code to tory. Since backups will be
the repository and main- performed regularly, the
tain a practice of auto- amount of data loss will be
saving. minimal.
Project Delays or | Medium High Develop a realistic and | Regularly track project | If this risk becomes a
Timing Issues achievable project plan, | progress through our | reality, and delay(s) be-
avoiding underestimation | Gantt chart to identify de- | come unavoidable, inform
of task durations. Activate | viations from the schedule | our supervisor immedi-
development as soon as | and make adjustments. | ately and discuss potential
possible. Allocate suffi- | Monitor milestones and | solutions, such as exten-
cient time for each task | deliverables closely. sions or reducing the scope
with enough buffer room if necessary. Prioritise crit-
for potential setbacks. ical tasks to ensure core
Maintain open commu- deliverables are still met.
nication with each other If necessary, explore alter-
and our supervisor about native approaches that re-
progress and potential quire less time.
delays.
Limited  Avail- | Low High Utilise data augmentation | Track data distributionand | If this risk becomes a real-
ability of High- techniques to artificially | address class imbalances | ity, collaborate with med-
Quality Medical expand the dataset (e.g. | during augmentation. Reg- | ical institutions to access
Data flipping, rotating). Explore | ularly monitor training & | larger labelled datasets,
transfer learning from a | validation loss and perfor- | and possibly consolidate
related pre-trained Brain | mance metrics to detect po- | several datasets into one.
MRI MIS model. tential overfitting due to | Evaluate the effectiveness
limited data. of data augmentation tech-
niques and refine if neces-
sary. Consider incorporat-
ing semi-supervised learn-
ing techniques if unla-
belled data is available.
Scope Creep Medium Medium Clearly define the project | Regularly review project | If this risk becomes a real-

ity, refocus efforts on core
project objectives and en-
sure their successful im-
plementation, before con-
sidering any extended fea-
tures. Discuss potential de-
lays with the supervisor if
scope expansion is neces-
sary.
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Risk

Likelihood

Severity

Mitigation

Monitoring

Management

Unexpected Con-
vergence Issues
during Training

Medium

Medium

Experiment with different
hyper-parameter settings
(learning rates, batch
sizes, optimisers) to find
the optimal convergence
configuration. Imple-
ment early stopping
mechanisms to prevent
overfitting if training
plateaus. Allocate buffer
time in our project plan
for troubleshooting and
refining our training
approach based on unfore-
seen obstacles.

Track performance met-
rics (loss, accuracy) of the
model to assess model im-
provement. Use visualisa-
tion tools to visualise the
training loss curves and
validation accuracy, to ap-
propriately identify any
signs of model stagnation
or divergence. Monitor for
common signs of overfit-
ting, such as stagnation or
divergence.

If this risk becomes a re-
ality, pivot to a different
training approach to vastly
improve our model’s stabil-
ity. Such as: Utilise learn-
ing rate schedulers to ad-
just the learning rate dur-
ing training. Implement
weight decay to prevent ex-
ploding gradients. Employ
dropout layers to reduce
overfitting. Explore cur-
riculum learning, where
the model is trained pro-
gressively on more chal-
lenging tasks.

Emergencies in

Personal Life
(health, family,
etc.)

High

Medium

Prioritise our health, and
maintain a healthy work-
life balance. Maintain clear
communication channels
between each other and
our supervisor to discuss
any personal challenges
that arise.

Monitor personal well-
being and workload
distribution.

If this risk becomes a real-
ity, inform our supervisor
immediately, and discuss
the possibility of flexible
deadlines, acknowledging
the unforeseenness of the
personal circumstances.
Collaborate to temporar-
ily adjust workloads to
minimise project impact
during emergencies.




B APPENDIX B: GANTT CHART
(TIMELINE AND MILESTONES)
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SAMSeg

Research and Discovery
Research & Write Literature Review
Milestone 1: Completion of Research & Discovery
Ethics Application Submitted

Project Proposal
Draft Project Proposal
Project Proposal Presentation
Revise Project Proposal
Final Project Proposal Submitted

Dataset Curation & Pre-Processing
Research Datasets
Milestone 3: Completion of Dataset Selection
Performing Dataset Preparation & Pre-Processing
Milestone 4: Completion of Data Collection & Pre-Processing

Design & Implementation
Milestone 2: Selection of Framework Modification Approaches
Set-up Development Environment
Write Preliminary Data Loading & Training Scripts
Perform PEFT on SAM Baseline
Milestone 5: Completion of Fine-Tuned SAM Baseline Model
Implement our Framework Modifications
Milestone 6: Completion of Framework Modification Models

Evaluation

Develop an Evaluation Plan using Chosen Metrics

Conduct Evaluation

Analyse & Interpret Evaluation Results for Refinements

Milestone 8: Completion of Final Evaluation & Refinement
Project Midpoint

Prepare for Project Progress Demonstration

Demonstrate Project Progress

Milestone 7: Completion of Midpoint Demo & Progress Review

Project Paper
Write Project Paper Scaffold
Write & Edit First Draft of Project Papers
Milestone 9: Completion of First Draft of Project Papers
Finalise Project Paper
Final Project Paper Submitted
Finalise Project Code
Final Project Code Submitted

Post-Submission
Prepare for Final Project Demonstration
Demonstrate Final Project
Create Project Poster
Create Project Website
Prepare for School of IT Showcase
Presented at the School of IT Showcase
Milestone 10: Official Completion of Project!
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